ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Blue emission of Sr_{2-x}Ca_xP₂O₇:Eu²⁺ for near UV excitation

Jinying Yu^{a,b}, Xia Zhang^{a,*}, Zhendong Hao^a, Yongshi Luo^a, XiaoJun Wang^c, Jiahua Zhang^{a,*}

- ^a Kev Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- ^b Graduate School of Chinese Academy of Sciences, Beijing 100039, China
- ^c Department of Physics, Georgia Southern University, Statesboro, GA 30460, USA

ARTICLE INFO

Article history:
Received 2 September 2011
Received in revised form 12 October 2011
Accepted 13 October 2011
Available online 15 November 2011

Keywords: Photoluminescence Structure Phosphor

ABSTRACT

 $Sr_{2-x}Ca_xP_2O_7$: Eu^{2+} (x=0-2) phosphors with intense and adjustable blue emission are prepared by solid state reaction. The crystal phase evolution and correlated photoluminescence properties are studied as a function of Ca^{2+} content based on the experimental measurements of X-ray diffraction, photoluminescence and fluorescence decay. Our results indicate that $Sr_{2-x}Ca_xP_2O_7$: Eu^{2+} crystallize in single α - $Sr_2P_2O_7$ type phase for $x \le 0.75$. As increasing x from 0.75, α - $Ca_2P_2O_7$ type phase starts to form and increase followed by reduction of α - $Sr_2P_2O_7$ type phase. The single α - $Ca_2P_2O_7$ type phase is obtained only at x=2. The emission band (band I) in α - $Sr_2P_2O_7$ type phase and that (band II) in α - $Ca_2P_2O_7$ type phase both shift to the red on increasing x due to enhancement of crystal field strength in case of Ca^{2+} substitution for Sr^{2+} . This substitution also leads to remarkably inhomogeneous broadening of band I, within which energy transfer from the high energy Eu^{2+} to the low energy one is observed. The superposition of band I and band II results in various distributions of intense emission band including the redshifted and more broadened ones suitable for white light generation.

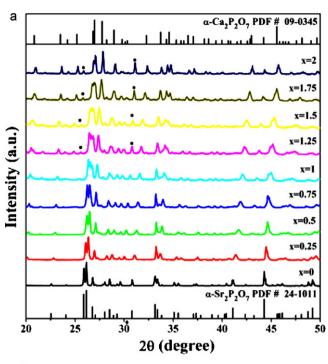
© 2011 Published by Elsevier B.V.

1. Introduction

Eu²⁺ activated highly efficient blue emitting pyrophosphate phosphors $Sr_2P_2O_7$: Eu^{2+} and $Ca_2P_2O_7$: Eu^{2+} were studied in the early 1970s for application to the fluorescent lamp lighting [1]. Since the development of GaN based blue and near ultraviolet (UV) light emitting diodes (LEDs) at the end of last century, the solid state lighting sources based on white LEDs fabricated using blue (~460 nm) and/or near UV (~400 nm) LED chips coated with phosphors have been widely studied [2-8]. The white LEDs employing near UV LED chips with tricolor phosphors have the advantage of less shift of color point against forward current because the white light is completely phosphor converted not like the combination of blue LED with the yellow emitting YAG:Ce³⁺ phosphor [2]. Upon near UV excitation, α -Sr₂P₂O₇:Eu²⁺ and α -Ca₂P₂O₇:Eu²⁺ strongly emit at 420 nm and 416 nm, respectively [9,10]. Our previous study demonstrated that α -Ca₂P₂O₇:Eu²⁺ allows Mn²⁺ to incorporate into its matrix to generate a strong additional band in orange originated from Mn²⁺ through Eu²⁺-Mn²⁺ energy transfer, resulting in dual color (blue and orange) emissions for near UV LED chip based white LEDs [10]. However, both α -Sr₂P₂O₇:Eu²⁺ and α -Ca₂P₂O₇:Eu²⁺ emit at short wavelength of blue with bandwidth

The present paper demonstrates adjustable emission position and bandwidth of $\mathrm{Eu^{2^+}}$ in $\mathrm{Sr_{2^-x}Ca_xP_2O_7}$. The crystal phase evolution and correlated photoluminescence properties are systematically studied as a function of $\mathrm{Ca^{2^+}}$ content based on the experimental measurements of X-ray diffraction, photoluminescence and fluorescence decay. The redshifted and broadened blue emission band is achieved.

2. Experimental


The $Sr_{2-x}Ca_xP_2O_7$: Eu^{2+} phosphors have been prepared by conventional solid-state reaction. The starting materials, analytical grade, $SrHPO_4$, $CaHPO_4$, $(NH_4)_2HPO_4$ and Eu_2O_3 were employed in molar ratio of $Sr_{2-x}Ca_xP_2O_7$:4% Eu^{2+} with various x (x=0,0.25,0.5,0.75,1,1.25,1.5,1.75,2). After a good mixing in an agate mortar, the mixtures were sintered at $1200\,^{\circ}C$ for 4h under a CO reducing atmosphere. All the experiments were performed at room temperature. The structure of sintered samples was identified by X-ray powder diffractometer (XRD) (Rigaku D/M AX-2500V). The measurements of photoluminescence (PL) and photoluminescence excitation (PLE) spectra were performed by a Hitachi F4500 fluorescent spectrometer. In fluorescence lifetime measurements, the third harmonic (355 nm) of a Nd doped yttrium aluminum garnet laser (Spectra-Physics, GCR130) was used as an excitation source, and the signals were detected with a Tektronix digital oscilloscope (TDS 3052).

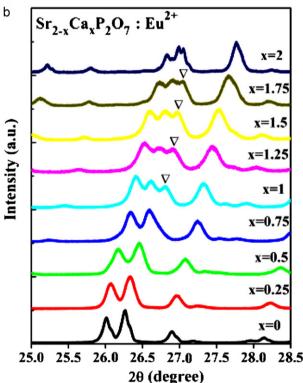

3. Results and discussion

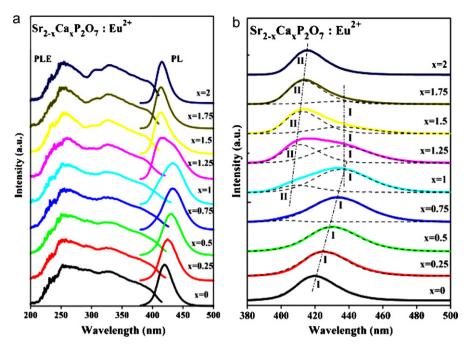
Fig. 1(a) shows the XRD patterns of $Sr_{2-x}Ca_xP_2O_7$:4% Eu^{2+} (x=0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2) phosphors in the 2θ range of $20-50^\circ$. One can observe the evolution of crystalline structure from

merely around 20 nm. To generate ideal white light, to broaden and shift the blue band to longer wavelength is expected.

^{*} Corresponding author. Tel.: +86043186708875; fax: +86043186708875. E-mail addresses: xzhang31@yahoo.cn (X. Zhang), zhangjh@ciomp.ac.cn (J. Zhang).

Fig. 1. (a) XRD patterns of $Sr_{2-x}Ca_xP_2O_7$:4% Eu^{2+} (x = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2) phosphors and the standard α - $Sr_2P_2O_7$ (no. 24-1011), α - $Ca_2P_2O_7$ (no. 09-0345). (*) Diffraction peak of $Ca_3(PO_4)_2$ phase. (b) Fine XRD patterns for 2θ degree within 25.0° and 28.5°.

 α -Sr₂P₂O₇ type phase (JCPDS 24-1011) to α -Ca₂P₂O₇ type phase (JCPDS card 09-0345) with increasing Ca²⁺ composition x from 0 to 2. α -Sr₂P₂O₇ has an orthorhombic unit cell with space group *Pnma*. There are two types of Sr²⁺ sites which are both coordinated by nine oxygens [11,12]. α -Ca₂P₂O₇ crystallizes in the monoclinic space group *P2*₁/n. There are also two types of Ca²⁺ sites that show coordination numbers of eight [13]. In Fig. 1(a), the monotonic shift


Table 1 The lattice parameters of orthorhombic $Sr_{2-x}Ca_xP_2O_7$: Eu^{2+} ($x \le 0.75$) with the changing of x.

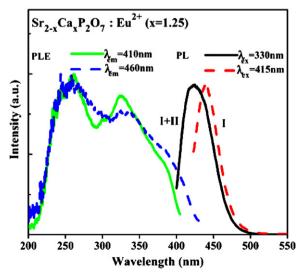
х	а	b	с
0	8.39	13.046	5.468
0.25	8.822	13.005	5.391
0.5	8.804	12.978	5.347
0.75	8.775	12.969	5.353

to higher diffraction angles of the main XRD peaks with increasing x is attributed to the increasing replacement of Sr^{2+} with ionic radius of 1.12 Å by small Ca²⁺ (0.99 Å). The formation of the minor by-product Ca₃(PO₄)₂ phase (JCPDS 70-2065, *) is appeared for x > 1. The impact on our investigated photoluminescence properties can be excluded because the emission band (480 nm)[1] of Ca₃(PO₄)₂:Eu²⁺ is not detected in PL spectra. The fine XRD patterns for 2θ degree within 25.0° and 28.5° are exhibited in Fig. 1(b). It shows that the XRD patterns for x within 0-0.75 are identical to the α -Sr₂P₂O₇ type phase except of angle shift. This indicates that $Sr_{2-x}Ca_xP_2O_7$: Eu²⁺ forms a complete solid solution in α - $Sr_2P_2O_7$ type phase for $x \le 0.75$. As x = 1, an additional peak (∇) appears, implying the formation of α -Ca₂P₂O₇ type phase, that is confirmed by the correlated luminescent properties. The lattice parameters of the orthorhombic $Sr_{2-x}Ca_xP_2O_7$: Eu^{2+} ($x \le 0.75$) with the changing of x have been calculated out and illustrated in Table 1. As expected, the lattice parameters decrease with increasing *x* ascribed to the increasing replacement of Sr2+ with ionic radius of 1.12 Å by small Ca²⁺ (0.99 Å). For $x \ge 1$, $Sr_{2-x}Ca_xP_2O_7$: Eu²⁺ is mixed phases and the lattice parameters cannot be calculated out by a general

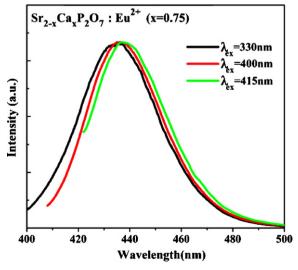
Fig. 2(a) shows the PL (λ_{ex} = 330 nm) and PLE spectra (λ_{em} = peak positions) for $Sr_{2-x}Ca_xP_2O_7:4\%$ Eu²⁺ with various x. One can see both the PLE and PL spectra correlate to x. The PLE spectra cover the UV and near UV spectral region. The PL spectra strongly correlate to x, including both the positions and bandwidths, as shown in detail in Fig. 2(b). For x = 0, $\alpha - Sr_2 P_2 O_7$: Eu²⁺ exhibits a PL band (band I) peaking at 420 nm. The band I is Gaussian type and performs a redshift from 420 nm to 435 nm with increasing x up to 1. With further increasing x, a new band (band II) appears and gradually enhances at the higher energy side of band I. The superposition of the two bands leads to a broad blue PL band that becomes the widest at x = 1.25. The evidence for this spectral superposition is that the distribution of the broad PL band is dependent on excitation wavelength. Fig. 3 shows the PL and PLE spectra monitored at different wavelengths for the sample with x = 1.25. The significant difference between the PL spectra upon 330 nm and 415 nm excitation and between the PLE spectra monitoring at 410 nm and 460 nm is remarkable, indicating different optical properties of band I and band II. Especially upon 415 nm excitation, only band I is observed, ascribing to the vanishment of the excitation of higher energy band II at this wavelength. For x = 2, band II is therefore originated from pure α -Ca₂P₂O₇:Eu²⁺. As a result, each PL spectrum for x within 1-1.75 can be fitted by two Gaussian bands in wavenumber, in which the lower energy band is named as band I and the higher energy one is band II, as shown in Fig. 2(b).

The fitting results are literally summarized in Table 2. For band I, the peak position shifts from 420 nm to 435 nm followed by band broadening from 24 nm to 33 nm with increasing x from 0 to 1. Further increasing x beyond 1, both the position and bandwidth of band I keep unchanged. The redshift of band I is ascribed to the enhancement of the crystal field strength due to Ca^{2+} partial substitution for Sr^{2+} in α - $Sr_2P_2O_7$ type phase. The band broadening is attributed to inhomogeneous broadening due to random substitution. The inhomogeneous broadening is examined by PL spectra in the sample with x = 0.75, as shown in Fig. 4. Because the sample (x = 0.75) shows

Fig. 2. (a) PL (λ_{ex} = 330 nm) and PLE spectra (λ_{em} = peak positions) for $Sr_{2-x}Ca_xP_2O_7$:4% Eu²⁺ (x = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2) phosphors. (b) PL (solid) spectra for $Sr_{2-x}Ca_xP_2O_7$:4% Eu²⁺ (x = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2) upon 330 nm excitation and the Gaussian fitting results (dash).


Table 2 Emission properties of Sr–Ca pyrophosphate compositions.

Composition	Peak position (nm) band I, band II		Width at half-height (nm) band I, band II		
$\begin{array}{c} \alpha\text{-}Sr_2P_2O_7;4\%Eu^{2+} \\ Sr_{1.75}Ca_{0.25}P_2O_7;4\%Eu^{2+} \\ Sr_{1.5}Ca_{0.5}P_2O_7;4\%Eu^{2+} \\ Sr_{1.25}Ca_{0.75}P_2O_7;4\%Eu^{2+} \\ Sr_{1}Ca_{1}P_2O_7;4\%Eu^{2+} \\ Sr_{0.75}Ca_{1.25}P_2O_7;4\%Eu^{2+} \\ Sr_{0.5}Ca_{1.5}P_2O_7;4\%Eu^{2+} \\ Sr_{0.25}Ca_{1.75}P_2O_7;4\%Eu^{2+} \\ A^{-}Ca_{2}P_2O_7;4\%Eu^{2+} \\ \alpha\text{-}Ca_{2}P_2O_7;4\%Eu^{2+} \end{array}$	420 425 430 434 435 435 435 435 435	409 410 412 414 416	24 27 30 33 33 33 33 33 33	22 21 21 20 20	

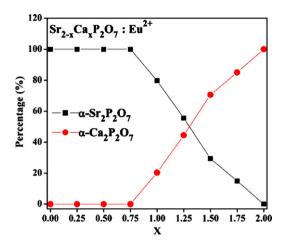

only band I (Fig. 2), the observation of excitation wavelength dependent PL position of band I, as shown in Fig. 4, demonstrates the existence of inhomogeneous broadening. The unchanged position and width of band I for x > 1 is explained as follows. In view of the

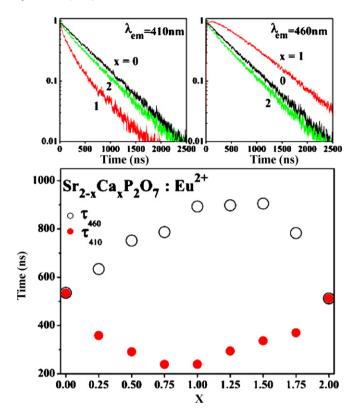
continuous shift of the XRD peak to higher angles, the Ca^{2+} substitution for Sr^{2+} may continuously takes place with increasing x. The observation of band II followed by appearance of the new XRD peak (∇) indicates that $\alpha\text{-Ca}_2P_2O_7$ type phase forms for $x \geq 1$. The cease of redshift of band I for x > 1 is speculated to be the result of formation of deformed $\alpha\text{-Sr}_2P_2O_7$ type phase which perhaps tends to the $\alpha\text{-Ca}_2P_2O_7$ type phase that forces the emission band of Eu^{2+} towards the high energy side and in turn compensates the redshift of band I due to Ca^{2+} substitution for Sr^{2+} . Meanwhile, the environmental disorder of $\alpha\text{-Sr}_2P_2O_7$ type phase reaches the maximum for $x \geq 1$.

For band II, it appears at x=1 and subsequently shifts to the red side followed by band narrowing on increasing x. As a result, $Sr_{2-x}Ca_xP_2O_7$: Eu^{2+} starts to form $\alpha-Ca_2P_2O_7$ type phase for $x\geq 1$. With increasing x, the crystal field strength is enhanced due to Ca^{2+} substitution for Sr^{2+} which therefore leads to a redshift of band II. While the environmental disorder decreases with increasing of

Fig. 3. PL and PLE spectra monitored at different wavelengths with x = 1.25 sample.

Fig. 4. PL spectra upon different excitation wavelengths with x = 0.75 sample.




Fig. 5. The phase percentages of $\alpha\text{-}Sr_2P_2O_7$ type phase and $\alpha\text{-}Ca_2P_2O_7$ type phase in the phosphors.

 Ca^{2+} substitution for Sr^{2+} in α - $Ca_2P_2O_7$ type phase until pure α - $Ca_2P_2O_7$ is formed for x = 2.

On the analysis above, the crystal phase of $Sr_{2-x}Ca_xP_2O_7$: Eu^{2+} is dependent on x. For 0 < x < 0.75, the materials keep pure α -Sr₂P₂O₇ type phase. For $1 \le x < 2$, the systems is speculated consisting of two mixed phases of deformed α -Sr₂P₂O₇ type phase and pure α -Ca₂P₂O₇ type phase. For x=2, the phosphor is pure α - $Ca_2P_2O_7$ type phase. The percentages of α - $Sr_2P_2O_7$ type phase (including pure and deformed ones) and pure α -Ca₂P₂O₇ type phase can be estimated based on PL spectra. We experimentally observed that the luminescence efficiency of α-Sr₂P₂O₇:Eu²⁺ and α-Ca₂P₂O₇:Eu²⁺ are almost identical under excitation in range of 250-380 nm. It is hence possible to estimate phase percentages by comparing the integrated area of band I and band II that under 330 nm excitation, as shown in Fig. 5. It demonstrates that $Sr_{2-x}Ca_xP_2O_7$: Eu^{2+} crystallizes only in α - $Sr_2P_2O_7$ type phase for x in the range of 0-0.75. For x > 0.75, additional phase α -Ca₂P₂O₇ type phase starts to form and subsequently increases with increasing x followed by percentage reduction of α -Sr₂P₂O₇ type phase. For x = 2, there exists complete α -Ca₂P₂O₇ type phase. The point for the equal contents of the two phases occurs at x = 1.3.

The fluorescence decay patterns (λ_{ex} = 355 nm) monitored at 410 nm and 460 nm (the tail of the emission band) are measured. The decay curves for x = 0, 1 and 2 are plotted in Fig. 6 as representatives. It is found that both decays at 410 nm and 460 nm are exponential for x = 0 and 2, but deviate from exponential function for x in the range of 0.25–1.75, where the decays at 410 nm become faster and that at 460 nm show a build-up component. This phenomenon reflects the characteristics of energy transfer from donors to acceptors, i.e., from high energy Eu²⁺ at 410 nm to low energy Eu²⁺ at 460 nm.

The lifetimes for fluorescence at 410 nm (τ_{410}) and 460 nm (τ_{460}) are obtained by integrating the decay curves with the normalized initial intensities. The change of the lifetimes with x is shown in Fig. 6 (bottom). It is clearly demonstrated that τ_{410} and τ_{460} vary in opposite tendency following x, reflecting the result of energy transfer which is considered to occur only within the same crystal phase. As listed in Table 2, band II is located at short wavelength and has a smaller bandwidth in comparison with band I. The energy transfer from Eu²⁺ at 410 nm to that at 460 nm is considered to occur only within band I rather than band II. For x in the range of 0–0.75, τ_{410} decreases with x. This reduction is attributed to enhanced energy transfer from Eu²⁺ at 410 nm to lower energy Eu²⁺ within the inhomogenously broadened band I of α -Sr₂P₂O₇ type phase. The enhanced energy transfer is resulted

Fig. 6. Fluorescence decays monitored at 410 nm and 460 nm for x = 0, x = 1 and x = 2 within $Sr_{2-x}Ca_xP_2O_7:4\%$ Eu²⁺ (x = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2) phosphors. Bottom: lifetimes of 410 nm (τ_{410}) and 460 nm (τ_{460}).

from the increase of lower energy Eu²⁺ sites due to increased Ca²⁺ substitution for Sr²⁺. For $x \ge 1$, α -Ca₂P₂O₇ type phase is formed followed by continues reduction of α -Sr₂P₂O₇ type phase. As a result, the effect of energy transfer is reduced and in turn τ_{410} gradually approaches to the fluorescence lifetime of band II in α -Ca₂P₂O₇. Accordingly, the increase of τ_{460} with x in the range of 0–0.75 is the result of enhanced receipt of energy for the lower energy Eu²⁺ from high energy Eu²⁺. For $x \ge 1$, τ_{460} naturally approaches to the fluorescence lifetimes of band II in α -Ca₂P₂O₇ since the speculated deformed α -Sr₂P₂O₇ type phase vanishes for τ_{20}

4. Conclusions

 $Sr_{2-x}Ca_xP_2O_7$: Eu^{2+} (x=0-2) phosphors with intense and adjustable blue emission are prepared by solid state reaction. The crystal phase of $Sr_{2-x}Ca_xP_2O_7$ is dependent on x. For $0 \le x \le 0.75$, the materials keep pure α -Sr₂P₂O₇ type phase. For $1 \le x < 2$, the system is speculated consisting of two mixed phases of deformed α -Sr₂P₂O₇ type phase and pure α -Ca₂P₂O₇ type phase. For x = 2, the phosphor is pure α -Ca₂P₂O₇ type phase. The percentages of α -Sr₂P₂O₇ type phase (including pure and deformed ones) and pure α -Ca₂P₂O₇ type phase can be estimated based on PL spectra. The emission band (band I) in α -Sr₂P₂O₇ type phase and that (band II) in α -Ca₂P₂O₇ type phase both shift to the red on increasing x due to enhancement of crystal field strength in case of Ca²⁺ substitution for Sr²⁺. This substitution also leads to remarkably inhomogeneous broadening of band I, within which energy transfer from the high energy Eu²⁺ to the low energy one is observed. The superposition of band I and band II results in various distributions of intense emission band including the redshifted and more broadened ones suitable for white light generation.

Acknowledgements

This work is financially supported by the National Nature Science Foundation of China (10834006, 51172226, 10904141, 10904140), the MOST of China (2010AA03A404) and the Scientific project of Jilin Province (20090134, 20090524) and CAS Innovation Program.

References

- [1] C. Costas, Lagos, J. Electrochem. Soc. 117 (1970) 1189.
- [2] S. Nakamura, G. Fasol, Proc. SPIE 3002 (1997) 26.

- [3] J.S. Kim, P.E. Jeon, J.C. Choi, H.L. Park, Appl. Phys. Lett. 84 (2004) 15.
- [4] W.J. Yang, L.Y. Luo, T.M. Chen, et al., Chem. Mater. 17 (2005) 3883.
- [5] W.J. Yang, T.M. Chen, Appl. Phys. Lett. 88 (2006) 101903.
- [6] Y.O. Li, J.E.J. van Steen, J.W.H. van Krevel, et al., J. Alloys Compd. 417 (2006) 273–279.
- [7] Y.Q. Li, A.C.A. Delsing, G. de With, H.T. Hintzen, Chem. Mater. 17 (2005) 3242.
- [8] Hong He, Xiufeng Song, Renli Fu, et al., J. Alloys Compd. 493 (2010) 401–405.
- [9] S. Ye, Z.S. Liu, Mater. Res. Bull. 43 (2008) 1057.
- [10] Z.D. Hao, J.H. Zhang, X. Zhang, X.Y. Sun, Y.S. Luo, S.Z. Lu, Appl. Phys. Lett. 90 (2007) 2611.
- [11] L. Hagman, I. Jansson, C. Magneli, Acta Chem. Scand. 22 (1968) 1419.
- [12] J. Barbier, J.P. Echard, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 54 (1998) IUC9800070.
- [13] C. Calvo, Inorg. Chem. 7 (1968) 1345.